Probability and Statistics Chapter 4: Distributions in the presence of multi-dimensionality and functions of random variables

Definition Joint moment generating function The joint moment
generating function of (X, ..., X;) is defined by

k
mf;,...,xk(fli ..y I.F:) = tgl:exp Z t_ir X_;]!

i=1
if the expectation exists for all values of ¢,, ..., #, such that —h < t;<h
for some A >0, j=1....,k. [/

|

Remark my(t)) = my y(1;,0) = limmy (1, t,),andmy(t,) = my (0, 1,)

2 =0
= limmy y(t, 1,); that is, the marginal moment generating functions can
ty—0
be obtained from the joint moment generating function. {1
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Probability and Statistics Chapter 4: Distributions in the presence of multi-dimensionality and functions of random variables

The rth moment of X; may be obtained from my,  y(#;, ..., ) by
differentiating it r times with respect to ¢; and then taking the limit as all the ¢’s
approach 0. Also &[X} Xj] can be obtained by differentiating the joint moment
generating function r times with respect to ¢; and s times with respect to ¢; and
then taking the limit as all the #’s approach 0. Similarly other joint raw
moments can be generated.
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Probability and Statistics Chapter 4: Distributions in the presence of multi-dimensionality and functions of random variables

4.5 Independence and expectations

Theorem [f X and Y are independent and g,(-) and g,(*) are two
functions, each of a single argument, then

E19:(X)g2(Y)] = €[g,(X)] - E[gx(Y)].

PROOF We will give the proof for jointly continuous random
variables.

a OO n 00

S19:(X)g(N1=| | 9:()9:0)fx,(x. ) dx dy

l-__:.'l'__

[ 6:)920)x(e(y) dx dy

L —_ | —
o

i g,(x)fx(x) dx - er _gz{}")fr{}’) dy

= 6g(X)] - €1g2(Y)]. /11
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Chapter 4: Distributions in the presence of multi-dimensionality and functions of random variables

Corollary If X and Y are independent, then cov [X, Y] = 0.
PROOF Take g,(x) = x — uy and g,(y) =y — Hy:
cov [X, Y] = E[(X — pux)(Y — py)] = €[9:(X)g,(Y)]
= &[g,(X)]6[g2(Y)]
— E[X — iyl E1Y — ] =0 since E[X — pgl =0. [/
Definition

Uncorrelated random variables Random variables X and
Y are defined to be uncorrelated if and only if cov [X, Y] = 0.

1/

Remark The converse of the above corollary is not always true; that is,
cov [X, Y] =0 does not always imply that X and Y are independent,
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Probability and Statistics Chapter 4: Distributions in the presence of multi-dimensionality and functions of random variables

EXAMPLE Let U be a random variable which is uniformly distributed
over the interval (0, 1). Define X =sin 2nU and Y = cos 2nU. X and
Y are clearly not independent since if a value of X is known, then U is
one of two values, and so Y is also one of two values; hence the conditional
distribution of Y is not the same as the marginal distribution. &[Y] =
fo cos 2nu du = 0, and £[X] = [ sin 2nu du = 0; so cov [X, Y]= E[XY] =
[0 sin 2au cos 2nu du = 4 (g sin 4nu du = 0. 1]
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Probability and Statistics Chapter 4: Distributions in the presence of multi-dimensionality and functions of random variables

Theorem = Two jointly distributed random variables X and Y are
independent if and only if my y(1;, t;) = my(t;)my(t,) for all ¢, t, for
which —h <t, <h,i =1, 2, for some h > 0.

PROOF [Recall that m(t,) is the moment generating function of X.
Also note that my(f,) = my y(#;, 0).] X and Y independent imply that
the joint moment generating function factors into the product of the
marginal moment generating functions by taking g,(x) = e"*
and g,(y) = e€?*. The proof in the other direction will be omitted.

il
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Probability and Statistics Chapter 4: Distributions in the presence of multi-dimensionality and functions of random variables

Cauchy-Schwarz inequality

Theorem | Cauchy-Schwarz inequality Let X and ¥ have finite
_secnnd moments; then (§[XY])* = |£[XY]|? < £[X?]&[ V2], with equality
if and only if P[Y = ¢X] = | for some constant c.

PROOF The existence of expectations &[X], &[Y], and &[X Y]
follows from the existence of expectations &[X?] and &[Y?]. Define
0 <A(t)=E[(tX — Y)*] = E[X°1% — 28[X Y]t + & Y?]. Now A(t) is a
quadratic function in ¢ which is greater than or equal to 0. If A(t) > 0,
then the roots of /() are not real; so 4(&[XY])? —46[X2]€[Y?] <0,
or (E[XY])? <&[X?16[Y?). If h(f)=0 for some . say I,, then
&[(to X — Y)*] =0, which implies P[t, X = Y] = 1. /11
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F?Drnllary |px,v| < 1, with equality if and only if one random variable
1s a linear function of the other with probability 1.

PROOF Rewrite the Cauchy-Schwarz inequality as |1E[UV]| <
JEU?IE[V?), and set U = X — pyand V=Y —yu,.
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Probability and Statistics Chapter 4: Distributions in the presence of multi-dimensionality and functions of random variables

5 Highlight: The bivariate normal distribution

5.1 Density function

Definition Bivariate normal distribution Let the two-dimensional
random variable (X, Y) have the Joint probability density function
1

fx, r (X, ) =f(x, ¥)=

2noy t:rh/(l — p?

e 5 1
::-::ﬂ:h:p’- : ; [(I *”-’f) __pr_ﬂx J-"'Hr+ Y — py)?
2(1 - p ] JX L'TI ﬂ'r G"},

for —o0 < x < 0, —00 <y < oo, where oy, 6y, sy, y, and p are con-
stants such that —l1<p<1, O0<oay, 0<oy, —o0 <y < oo, and
— 00 < iy < 0o, Then the random variable (X, Y) is defined to have a
bivariate normal distribution.
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Probability and Statistics Chapter 4: Distributions in the presence of multi-dimensionality and functions of random variables

L

z = f(x,y)lorz > k

y
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Probability and Statistics Chapter 4: Distributions in the presence of multi-dimensionality and functions of random variables

p=0.25

p=0.75

Standard bivariate normal plots for p = 0.0, 0.25, 0.5 and 0.75
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=2 =] [x] | 4 - -] 1

p=0.5 p=0.75

Standard bivariate normal contours plots for p=0.0, 0.25, 0.5 & 0.75
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5.2 Moment generating function and moments

To obtain the moments of X and ¥, we shall find their joint moment generating
function, which is given by

o G0

my, (1, 1) = m(ty, 1) = E[ X' = [ [ e=tp(x, ) dy dx.

0 —

Theorem 12 The moment generating function of the bivariate normal
distribution is

m(ty, t,) = explt,ux + t, uy + 3(tios + 2ptit,ox 0y + 15 07)]. (33)
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Probability and Statistics Chapter 4: Distributions in the presence of multi-dimensionality and functions of random variables

PROOF Let us again substitute for x and y in terms of u and v 1o
obtain

m(t,, t,)

v OO .00 1
| er,axu+lza}.u e =[4/(1 —p2)Nut— 2pup + v?)

— Etlﬁx‘{'fzﬂf
—o0 ¥ — o 2n,/1 — p?

dv du,

The combined exponents in the integrand may be written

- [u? — 2puv + v® — 2(1 — p®)t,o5u — 2(1 — pHt, 04 0],

- 2(1 — p?

and on completing the square first on # and then on v, we find this expres-
sion becomes

1
- 2(1 — pzj tu = pv—(1 - Pz)flﬂx]z + (1 — p‘?}{ﬂ — ptioy — 1, a}‘}l

— (1 = p*)t303 + 2pt ity 050y + 15 07)),
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which, if we substitute

_u—pv— (1 — p*)t 0,

W — and Z=0— plyoy — 1,0y,
becomes
2 = 2
—iw® — 1z° 4 (103 + 2pt t,o0x 0y + 13 0%),
and the integral may be written

m(ty, 1) = €' T14 exp[d(tiog + 2pt,t, oy oy + 13 6F)]

o0 00 | .

_ = i3

::{J [ — e W22 dw dz
—o0 Y =0 27[

since the double integral is equal to unity. /]
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Probability and Statistics Chapter 4: Distributions in the presence of multi-dimensionality and functions of random variables

Theorem If (X, Y) has bivariate normal distribution. then
& Y, = Hy,
var [X]=¢%,
var [Y] = o2,

cov [ X, ¥)= POx Oy,

and

Px v = P-
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Probability and Statistics Chapter 4: Distributions in the presence of multi-dimensionality and functions of random variables

PROOF The moments may be obtained by evaluating the appro-
priate derivative of m(t,, t;) at t; =0, 7, =0. Thus,

om
E[X] = — =iy
Oty |¢y,12=0
0*m
£{X1]=a—2 =__.ui+ﬂ';1(.
f]. I'1,l1=—'ﬂ

Hence the variance of X i1s
EI(X — uy)*] = E[X?] — pi = ox.

Similarly, on differentiating with respect to f,, one finds the mean and
variance of Y to be uy and 63. We can also obtain joint moments

E[X" Y]
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Probability and Statistics Chapter 4: Distributions in the presence of multi-dimensionality and functions of random variables

by differentiating m(t,, 1,) r times with respect to #, and s times with respect
to t, and then putting #; and ¢, equal to 0. The covariance of Xand Y 1s

ENX — px (Y — uy)] = E[XY — Xpy — Yy + px py]

= E[XY] — px py
al
= mit,, 1t -
oty 0t, g ty=t2=0 i
— pﬂ-x frr .
Hence, the parameter p is the correlation coefficient of X and Y.
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Theorem 14 If (X, Y) has a bivariate normal distribution, then X and Y
are independent if and only if X and Y are uncorrelated.

PROOF X and Y are uncorrelated if and only if cov [X, ¥] =0 or,
equivalently, if and only if py y=p=0. It can be observed that if
p =0, the joint density f(x, y) becomes the product of two univariate
normal distributions; so that p =0 implies X and Y are independent.
We know that, in general, independence of X and Y implies that X and Y
are uncorrelated. 1]
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5.3 Marginal and conditional densities

Theorem If (X, Y) has a bivariate normal distribution, then the mar-
ginal distributions of X and Y are univariate normal distributions; that is,
X is normally distributed with mean u, and variance o3, and Y is nor-
mally distributed with mean uy and variance o7y .
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PROOF The marginal density of one of the variables X, for example,
1s by definition

Jx(x) = l J(x,y) dy;
and again substituting

Y — Hy
Oy

L=

and completing the square on v, one finds that

» OO0 |
Jx(x) = |

J—w 2nox/ 1 — p?

X eKP[_E (x _'ux)z - 1 (U—FI—_ #I)I} dv
7 Oy | 2(1 — p3) Ox *
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Then the substitutions

) — p(x — uy)/o dv
W= p‘{; 'ui}' i and dw = — : =
5 -A—p v1i—p
show at once that
i 1 {x— px\?
)= — o[- ()7
,,/Encrx 2 Ox

the univariate normal density. Similarly the marginal density of ¥ may
be found to be

) = — exp[—% & "“")z].

J2na? I
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Probability and Statistics Chapter 4: Distributions in the presence of multi-dimensionality and functions of random variables

Theorem If (X, Y) has a bivariate normal distribution, then the
conditional distribution of X given Y =y is normal with mean
Ux + (poyloy)(y — uy) and variance ox(l — p*). Also, the conditional
distribution of Y given X = x 1s normal with mean uy + (poy/ox)(x — uy)
and variance g3(1 — p?).
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PROOF The conditional distributions are obtained from the joint
and marginal distributions. Thus, the conditional density of X for fixed

values of Y 1s

f(x,»)
)

and, after substituting, the expression may be put in the form

fx|r(3‘-'|}')

1
= Jimoxd1— 7

fxlr{xh’} =

s lon- 2ol
E"”[_Zaiu—pl}"" e VTR
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Probability and Statistics Chapter 4: Distributions in the presence of multi-dimensionality and functions of random variables

which is a univariate normal density with mean uy + (poy/oy)(y — py)
and with variance ¢2(1 — p?). The conditional distribution of ¥ may be

obtained by interchanging x and y to get

fr|x(}’|x}

\/E:rm'la\/l

S Y. T
__E:P{ 2&'%{1-—;:!2) Y — Hy ox Hx l

K Van Steen 101



Probability and Statistics Chapter 4: Distributions in the presence of multi-dimensionality and functions of random variables

Link with regression analysis

As we already noted, the mean value of a random variable in a conditional
distribution is called a regression curve when regarded as a function of the fixed
variable in the conditional distribution. Thus the regression for X on ¥ =y in
Eq. ) is uy + (poy/oy)(y — py), which is a linear function of y in the present
case. For bivariate distributions in general, the mean of X in the conditional
density of X given Y = y will be some function of y, say g(-), and the equation

x=g(y)

when plotted in the xy plane gives the regression curve for X. It is simply a
curve which gives the location of the mean of X for various values of Y in the
conditional density of X given Y = y.
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Probability and Statistics Chapter 4: Distributions in the presence of multi-dimensionality and functions of random variables

For the bivariate normal distribution, the regression curve is the straight
line obtained by plotting

po
IZHI+J{y—FY}r
Oy
as shown in Fig The conditional density of X given Y =y, fyy(x|y), is

also plotted in Fig  for two particular values y, and y, of Y.
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X i
X = iy + poxly — uy)oy
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PART 2: Distributions for functions of random variables
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Probability and Statistics Chapter 4: Distributions in the presence of multi-dimensionality and functions of random variables

1 Introduction

* Real-life examples often present themselves with far more complex density
functions that the one described so far.

* In many cases the random variable of interest is a function of one that we
know better, or for which we are better able to describe its density or
distributional properties

* For this reason, we devote an entire part on densities of “functions of
random variables”
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Probability and Statistics Chapter 4: Distributions in the presence of multi-dimensionality and functions of random variables

2 Expectations of functions of random variables
2.1 Expectation two ways

An expectation of a function of a set of random variables can be obtained two
different ways. To illustrate, consider a function of just one random variable,
say X. Let g(-) be the function, and set Y = g(X). Since ¥ is a random

variable, &£[Y] 1s defined (if it exists), and &[g(X)] is defined (if it exists). For
instance, if X and Y = g(X) are continuous random variables, then by definition

L 00

| yfy(y) dy, (1)

(Y] = |

-

and

Elg(X)] = f g(x)fx(x) dx; (2)

but Y = g(X), so it seems reasonable that &[Y] = &[¢g(X)]. This can, in fact,
be proved; although we will not bother to do it.
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Probability and Statistics Chapter 4: Distributions in the presence of multi-dimensionality and functions of random variables

Thus we have two ways of
calculating the expectation of Y = g(X); one is to average Y with respect to the
density of Y, and the other is to average g(X) with respect to the density of X.

In general, for given random variables X, ..., X, let ¥ = g(X,,..., X,);
then &[Y] = &[g(X,, ..., X,)], where (for jointly continuous random variables)

sm=[ mdy G

and

g[g{xi """ ;(n]]:J. R | g[xls-*-aIn}.th_“,.i',,(-rl-.l-“:-In] ti{:‘:] *-»dxn-

- 20 .r—lxi
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Probability and Statistics Chapter 4: Distributions in the presence of multi-dimensionality and functions of random variables

EXAMPLE Let X be a standard normal random variable, and let g(x) = x*.

For Y = g(X) =
ELYI= | () dy,
and
El9(X0) = 61X = [ x¥fy(x) dx.
Now
0 |
E[X?]= [ x* e ¥ dx=1

Y=o x.-'lll.zﬁ

ol

g[r]—j mm(m)* boty gy — 1,

using the fact that ¥ has a gamma distribution with parameters r = 4 and

4=1. [
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Probability and Statistics Chapter 4: Distributions in the presence of multi-dimensionality and functions of random variables

2.2 Sums of random variables

Theorem For random variables X,, ..., X

h

1

and

var[i Xi] = i var[X;]+2) Y cov[X;, X;]

1 :'(J'

5[i XI] = ; 61X:],

()

(6)
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PROOF That cﬁ"{z X,.J =Y &[X;] follows from a property of expec-
1 1

tation

o [; Xﬁ] . (]Z X, _ g[g Xi])z] = 5’[(; (= .:f’[X.-]}ﬂ

r n n
=8| %, ¥ 06— apxax, - erx )

:‘::1 JZF[(X SLX;X; — 6[X;])]
i var[X;] + 2} 3 cov[X;, X]. I

i<j
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Corollary If X,, ..., X, are uncorrelated random variables, then

var [Z:: Xi] = Z:var[Xi]. I

Theorem Let X,,..., X,and Y,, ..., Y, be two sets of random vari-
ables, and let ay, ..., @, and b,, ..., b, be two sets of constants; then

cnvli)ia,-)fj,i ] i

u[u']a

a; b;covlX;, Y,]. (7)
il
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Corollary If X, ..., X, are random variables and a,, ..., a, are
constants, then

n

var[i aiXi] Y. Z a;a; cov[X;, X;]

i=1 j=1 (8}
var[X]+ZZa a; cov[X;, X;].

[\-“]a

i= !
In particular, if X,, ..., X, are independent and identically distributed
random variables with mean py and variance oy and if X, =(1/n)} X;,

then

U}!

S[X, =1y, and var [X,] = f (9)
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PROOF Letm=n, Y,=X,,and b,=a;,i=1, ..., n in the above
theorem: then

var{i} a,-X,-] =cov{2:: a;X,-,ZT:bj Yj],

and Eq. (8) follows from Eq. (7). To obtain the variance part of Eq. (9)
from Eq. (8), set a; = I/n and o} = var [X;]. The mean part of Eq. (9)
1s routinely derived as

B I n I n 1 n
S0 = 8[3 x| =2 Y orxa=2 % e = m

_1 n
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2.3 Product and quotient

Theorem 3 Let X and Y be two random variables for which var [XY]
exists; then

E[XY)=puyuy +cov [X, Y], (12)
and
var [X Y]
= pi var [X] + uk var [ Y] + 2uy py cov [X, Y]
— (cov [X, YD? + E[(X — u)*(Y — py)’] + (13)

2uy6I(X — ) (Y — py)] + 2uy E[(X — pux)(Y — 1y)?].
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PROOF
XY = pypy + (X — pxdpy + (Y — pyp)py + (X — uy)(Y — ny).
Calculate &[X Y] and &[(X Y)?] to get the desired results. I/

Corollary If X andY are independent, [ X Y] = uy uy, and var [X Y] =
pz var [X] + py var [Y] + var [X] var [Y].

PROOF If X and Y are independent,
ENX — )X (Y — py)?] = E[(X — uy)*161(Y — py)?]
= var [X] var [ Y],
(X — ﬁx)z'{ Y — py)] = E[(X — px)*16[Y — uy] =0,
and

E[(X — puy)(Y — .“1"1'2] = 0. /1]

K Van Steen 116



Probability and Statistics Chapter 4: Distributions in the presence of multi-dimensionality and functions of random variables

Theorem 4

é’li] s T icav[}f, Y] +’u—‘§var[ Y], (14)

Y| uy Ui 1y

and

- F’_] y (j_ji)z(var[l'} " var[Y]  2cov[X, 1"]). (15)
Y v/ \ Hx 1y Hy Hy

PROOF To find the approximate formula for &[X/Y], consider the
Taylor series expansion of x/y expanded about (uy, py); drop all terms of
order higher than 2, and then take the expectation of both sides. The
approximate formula for var [X/ Y] is similarly obtained by expanding in
a Taylor series and retaining only second-order terms. 1]/
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Important consequence

the method of proof of
Theorem 4 can be used to find approximate formulas for the mean and variance
of functions of X and Y other than the quotient. For example,

2

1
Elg(X, Y)] =~ g(ux, uy) + 5 var[X] 552 g(x, y)

BXx.BY
2

dy 0x

1 il
i 5 var[Y] — g(x, y)

3y , (16)

HXx, BY

}1
HX, BY

}. (17)

+ cov[X, Y]

HXxy By

g(x, y)

and

2 %,
var[g(X, Y)] = var[X ][ = g(x, y) ] + var[Y}{a—y g(x, y)

|Ox

d
A Q(I, }’)

ux,ny OY

%,
+ 2 cov[X, Y]{—— g(x, y)
o0x
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Probability and Statistics Chapter 4: Distributions in the presence of multi-dimensionality and functions of random variables

3 Cumulative-distribution-function technique
3.1 Description of the technique

If the joint distribution of random variables Xj, ..., X, is given, then, theoreti-
cally, the joint distribution of random variables of Y, ..., ¥, can bedetermined,
where ¥;=g(Xy, ..-» X j=1, ..., k for given functions gy(*, ..«s *Ys.sess
g+, ..., *). By dehnition, the joint cumulative distribution function of
Y15 vovs g 18 Fy svven p(Mis e Py = Pl¥yp S P13e05 T 53]  But for-each
Y1 ---s Vi the event {Y, <y;; ...; Li<wy}={g/(Xy, -, X,) <¥; ..-;
g( Xy, ..., X)) <y} This latter event is an event described in terms of the
given functions g,(*, ..., *), ..., (", ..., *) and the given random variables
Xy, ..., X,. Since the joint distribution of X, ..., X, is assumed given, presum-
ably the probability of event {g,(X;, ..., X,) <y;; ...; gu(Xys ..., X)) < W}
can be calculated and consequently Fy, y.(-,..., ) determined. The above
described technique for deriving the joint distribution of Y., ..., ¥, will be
called the cumulative-distribution-function technique.
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EXAMPLE Let there be only one given random variable, say X, which has a

standard normal distribution. Suppose the distribution of ¥ = g(X) = X?
is desired.

Fy(y)

= P[Y <)]=P[X* <yl = P[-/y < X < /3] = ®(/y) — D(—/)

=\/22_JJ ! e ¥ dz = lJ : 1.- e ¥ dz, fory> 0,
% 4

0 wa z 0 IT'(3) /22
which can be recognized as the cumulative distribution function of a
gamma distribution with parameters r =4 and 4 = 1. /1]
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3.2 Distribution of minimum and maximum

Let X,, ..., X, be n given random variables. Define Y, = min [X,, ..., X]
and Y, =max [X,, ..., X,]. To be certain to understand the meaning of
Y, =max [X,, ..., X,], recall that each X; 1s a function with domain Q, the
sample space of a random experiment. For each we Q, X;(w) is some real
number. Now Y, is to be a random variable; that is, for each w, Y, (w) is to be
some real number. As defined, Y, (w) = max [X,(w), ..., X (w)]; that is, for
a given w, Y, (w) is the largest of the real numbers X,(w), ..., X (w).
The distributions of Y, and Y, are desired.
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Theorem  If X,,..., X, are independent random variables and Y, =
max [Xy, ..., X, ], then

Fy () = ] Fx,(») (18)
=1

If X,, ..., X, are independent and identically distributed with common
cumulative distribution function Fy,(-), then

Fy (y) = [Fx(W)]". (19)
/1]
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The distributions of Y, and Y, are desired. Fy (y)=P[Y, <y]=
P[X, <y;...; X, <y] since the largest of the X,’s is less than or equal to y if
and only if all the X ;'s are less than or equal to y. Now, if the X/’s are assumed
independent, then

PIX; €950 Xy Zp]= ]_[P[Xiﬂ}’]z HFI.-(}’};
i=1 i=1
so the distribution of ¥, = max [X,, ..., X, ] can be expressed in terms of the
marginal distributions of X, ..., X,,. If in addition it is assumed that all the
X, ..., X, have the same cumulative distribution, say Fy(-), then

::

Fy(y) = [Fx(»)]"

i=1
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Corollary If X,, ..., X, are independent identically distributed con-
tinuous random variables with common probability density function f,(*)
and cumulative distribution function Fy(-), then

fr,,{"r’) = n[Fx(y)]"~ lf,l:{,'i"}- (20)
PROOF

d
frn(}’) o Ej Fr,,(}'] = n[Fy(y)]" ]fx(}"]- I

K Van Steen 124



Probability and Statistics Chapter 4: Distributions in the presence of multi-dimensionality and functions of random variables

Theorem If X,,..., X, are independent random variables and Y, =
min [X,, ..., X,], then

n

Fr(y)=1-T] 11 = Fx] 21)

i=1

And if X,, ..., X, are independent and i1dentically distributed with com-
mon cumulative distribution function Fy(-), then

Fy(y)=1—[1 = Fy(»)]". (22)
1]

(A
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Corollary If X,, ..., X, are independent identically distributed con-
tinuous random variables with common probability density f,(-) and
cumulative distribution Fy(-), then

Jy,(¥) =n[l — Fx(}'ﬂ"_]fx(}’}- (23)
PROOF

d -1
by A= @Fr.ﬂ-’} =n[l — Fx(T /x(p). /1]
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3.3 Distribution of sum and difference of two random variables

Theorem Let X and Y be jointly distributed continuous random

variables with density fy y(x, ¥), and let Z=X+ Y and V=X -~ Y.
Then,

fﬂ(:} - | | f}; }-{.I, o — Jf} dl— —_ ' | fo. ].r(.: - J—". _1") IJI‘I', {2‘1}

and

)= [ furxx—v)dx=[ fx @+, ) ady. (25)
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PROOF We will prove only the first part of Eq. (24); the others are
proved in an analogous manner.

Fi2)=PIZ<z]=PIX+Y<zl= (| feslx, y)dxdy

xty<z

- |

Ij;xfr v(x, ) df] dx

- f ._ Fur (o — %) du] dx

by making the substitution y = u — x.
Now

fAz) = sz{z} d I U. Jx, v(X, 4 — x) dl’] }

dz  dz

- Sz~ x) dx. I
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Corollary If X and Y are independent continuous random variables
and Z= X + Y, then

D =ferD=[ fiz -0 dx=[ fz-np0)dy.  (6)

Remark The formula given in Eq. (26) is often called the convolution
formula. In mathematical analysis, the function f,(:) is called the
convolution of the functions f,(+) and fy(-). 11/
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3.4 Distribution of product and quotient

Theorem Let X and Y be jointly distributed continuous random vari-
ables with density fy y(x, y), and let Z = XY and U = X/Y; then

_ eoe 1] z e ] 'z
fz) = I —,fx_r(x.- “) dx = ’ __f.t',i’(__s J‘) dy, (27)
J_o ] % S S L
and
Jo(u) = | |y fx, v(uy, y) dy. (28)
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EXAMPLE Suppose X and Y are independent random variables, each
uniformly distributed over the interval (0, 1).

_ ] "z
fz(2) = J_ Tlfx r(-"-} ;) dx

1 z
— l —"I{{}‘]}(I)I{ﬂ,]}( ) dx

J_w | x] X

1

1
= I, I}(Z]J = I, 1y(x) dx

o X

»
21{0}”[2]J. ~dx = —log z Io, 1(2)-

letZ=XYand U= X/Y.
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00

fo)= | |ylfx,r(uy, y)dy

~ 00

=| |y, 1@, 1(y) dy

1 o fu
= To.0®@ | ydy+I, (@ | ydy

» OO

~|Jr’| {Im, IJ(H)I{U, 1}(}‘) +: Jir[1, :.:1(””{0, |,=u;(}"}} dy

1 1 /1A2
=—Im_l}(u)+§(—) Jr[],-:r_:fi(l"')‘

2 u,
Note that &[X/Y]=6&[Ul=1|udu+4(Y(1/u)du= o0, quite dif-
ferent from &[X]/E[Y] = 1. /1]
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4 Moment-generating-function technique

4.1 Description of the technique

There is another method of determining the distribution of functions of random
variables which we shall find to be particularly useful in certain instances. This
method is built around the concept of the moment generating function and will
be called the moment-generating-function technique.

This method is quite powerful in connection with certain techniques of
advanced mathematics (the theory of transforms) which, in many instances,
enable one to determine the distribution associated with the derived moment

generating function.
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EXAMPLE  Suppose X has a normal distribution with mean Oand variancel.
Let ¥ = X2, and find the distribution of Y.
o 1

my(t) = &[] = [ e’ \;{2 e ¥ dx
J_ e

al 1.—- fm g~ 3120 gy
\/211: - @

-4 o0

I s
T il W —r

2[1_21)—i:(—i)* for I<£,

1 —1
which we recognize as the moment generating function of a gamma with
parameters r =3 and A =3, It is also called a chi-square distribution
with one degree of freedom. | 11/
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4.2 Distribution of sums of independent random variables

Theorem If X;, ..., X, are independent random variables and the
moment generating function of each exists for all —A& < t < A for some

h>0,let Y=> X;;then
1

my(t) = E[exp ). X;t] = [[my (1) for —h<t<h.

i=1

PROOF

my(t) = E[exp Y, X,1] = g[m]

i=1

[ 615 = [Tme(0

=1

f [ 1
|I I|I III II
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EXAMPLE Suppose that X, ..., X, are independent Bernoulli random
variables; that is, P[X; = 1] =p, and P[X; =0]=1— p. Now

mxl(f) — FE‘I " q.

S n
’ my x (1) = [[ mx,(t) = (pe' + q)",

i=1

the moment generating function of a binomial random variable: hence

> X, has a binomial distribution with parameters n and p. /]
1
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The central limit theorem

* One of the most important theorems of probability theory is the central
limit theorem. It gives an approximate distribution of an average.

Theorem Central-limit theorem If for each positive integer n,
", (R,

n

are independent and 1dentically distributed random variables
with mean pu, and variance o5, then for each z

F; (z) converges to ®(z) as n approaches oo, (31)
where
- [Xn . 1{E'A[X’ﬂ:]} o Xn — Uy

—— — I
“ var [Xn] G-,'l.'.'ll \/ H

Z,
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Corollary If X, ..., X, are independent and identically distributed
random variables with common mean p, and variance og, then

X —
P[a e K b] ~ O(b) — D(a), (32)
oxl\/ 1
“ d — iy -
Ple< X, <d]=® (f ‘lf“) - fI}(C ‘u,r) x (33)
ox/\/ 1 ox/\/ 1
or
P[r<z X,-q] zm(‘?_”‘”"‘) —m(ﬂ"-). (34)
1 ﬂ.,/f”ﬂ’x V”{ngx
I
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5 The transformation Y=g(X)

The last of our three techniques for finding the distribution of functions of
given random variables is the transformation technigque. 1t is discussed in this
section for the special case of finding the distribution of a function of a uni-
dimensional random variable. That is, for a given random variable X we seek
the distribution of ¥ = g(X) for some function g(-). Discussion of the general

5.1 Distribution of Y=g(X)

A random variable X may be transformed by some function g(-) to define a
new random variable Y. The density of Y, f,(y), will be determined by the
transformation g(-) together with the density fy(x) of X.
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Theorem Suppose X is a continuous random variable with prob-
ability density function fx(-). Set ¥ = {x:f,(x) >0}. Assume that:

(1) y=g(x) defines a one-to-one transformation of X onto 9).

(1) The derivative of x = g~ '(y) with respect to y is continuous and
nonzero for y € 9, where g~ '(y) is the inverse function of g(x); that is,
g~ '(y) is that x for which g(x) = y.

Then Y = g(X) is a continuous random variable with density

fxlg™ 1(?)”1]()")-

d
fy(y) = Lf_y g 'y
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PROOF The above is a standard theorem from calculus on the change
of variable in a definite integral ; so we will only sketch the proof. Consider
the case when X is an interval. Let us suppose that g(x) is a monotone
increasing function over X; that is, g’(x) >0, which is true if and only if
(d/dy)g~'(y)>0 over 9. For ye, Fy(y)=Plg(X)<y]=P[X <
9 ' M1 =Fx(g7'(y), and hence fy(y) = (d/dy)Fy(y) = [(d/dy)g~(})]
fx(g'lfy}) by chain rule of differentiation. On the other hand, if g(x)
Is a monotone decreasing function over X, so that g'(x) <0 and
(d/dy)g~'(y) <0, then Fy(y)=Plg(X)<yl=P[X>g"'())]=1 - F,
(9~ '(¥)),andtherefore fy(y) = — [(d/dy)g ' (»)1fx(g~(») = |(d/dy)g~'(p)]
fx(g™'(y)) for ye 9. /111
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EXAMPLE Let X be a random variable with uniform distribution over the
interval (0, 1) and let Y =g(X)= X% The density of Y is desired.
Now

F()=PY<y]=PIX*<yl= | fi(dx=| dx=y

{x:x2<y}

forO<y<1;so

Fy(y) = m-""f.}’fq:ﬂ, 1 (¥) + Iy, o)(¥),

and therefore

Sy(y) . Iio,15(¥)

Y) =3 —F7—= 4w, )\))-

T Ry Y /1]
Application of the cumulative-distribution-function technique to find the

density of Y =g(X), as in the above example, produces the transformation

technique,
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EXAMPLE Suppose X has a beta distribution. What is the distribution of
Y=—log X? X¥={x:fy(x)>0={x:0<x<1}. y=g(x)= —log, x
defines a one-to-one transformation of X onto 9) = {y: y>0}. x=
g '(y) =e7?, so (dldy)g~'(y) = —e~?, which is continuous and nonzero
for ye 9. By Theorem 11,

d
fr(y) = ‘ d—yy"(y) Sx(g 7 ()Ig(y)

—_— - —yb—1
=@ B{a,b){“—’ )1 — e Lo, »)(¥)

]
" B(a, b)

™1 — e g ().

In particular, if b =1, then B(a, b) = 1/a: so Fly) = ae “Io (), an
exponential distribution with parameter a. [/
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5.2 Probability integral transform

The transformation Y = F,(X) is called the probability integral trans-
formation. It plays an important role in the theory of distribution-free statistics

and goodness-of-fit tests.

Theorem If X'is arandom variable with continuous cumulative dis-
tribution function Fy(x), then U = F,(X) is uniformly distributed over the
interval (0, 1). Conversely, if U is uniformly distributed over the interval
(0, 1), then X = Fy '(U) has cumulative distribution function F,(-).

PROOF P[U < u] = P[Fy(X) < u] = P[X < Fy '(u)] = Fy(Fy ‘(u)) =
ufor0 <u< 1. Conversely, P[X <x]=P[Fy'(U) <x]=P[U < Fy(x)]
= Fy(x). {11/
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Why is this an important result?

In various statistical applications, particularly in simulation studies, it is
often desired to generate values of somerandom variable X. To generate a value
of a random variable X having continuous cumulative distribution function
Fy(-), it suffices to generate a value of a random variable U that is uniformly dis-
tributed over the interval (0, 1). This follows from Theorem  since if U is a
random variable with a uniform distribution over the interval (0, 1), then X =
Fy'(U) is a random variable having distribution Fy(‘). So to get a value,
say x, of a random variable X, obtain a value, say u, of a random variable U,
compute Fy '(u), and set it equal to x. A value uofarandom variable U iscalled
a random number. Many computer-oriented random-number generators are

available.
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5.3 The transformation Y| = ¢,( X, ..., X)), ..., Y = gi( X1, ..., X))

Suppose that the discrete density function fy = x(xy, ..., x,) of the n-
dimensional discrete random variable (X,, ..., X,) 1s given. Let X denote
the mass points of (X,, ..., X,); that is,

X =0 oo XV, ... . B ooens Xy} 205

Suppose that the joint density of Y, = g((X;, ..., X)), ..oy Y=g Xy, . --, X))
1s desired. It can be observed that Y,, ..., Y, are jointly discrete and
PLY, =it s =l = ... v Vs oo s V) =2 Fxio o x (Xps -5 X,), Where
the summation is over those (x,,...,. x,) belonging to X for which (yy, ..., ») =
1777 b, PRGN, L) [,/ | {, NI o |
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Theorem Let X, and X, be jointly continuous random variables

with density function fy, x,(x;, X;). Set X ={(xy, X;): fx,, x,(X1, X2) > 0},
Assume that:

(i) », =g,(x;, x;) and y, = g,(x;, x,) defines a one-to-one transformation
of X onto 9).

(ii) The first partial derivatives of x;, = g7 '(yy, ¥,) and x; =g; (¥, y2)
are continuous over ¥).
(iii) The Jacobian of the transformation is nonzero for (yy, y,) € %).

Then the joint density of Y, = g,(X,, X,) and Y, = g,(X,, X,) 1s given
by

fri,h(}’h ya) = |J1fxl.x;{§ri(}’1= ¥2), 92 ](yls }’z)”ﬂyls Y2)- (40)
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EXAMPLE | Let X, and X, be two independent standard normal random

variables. Let ¥; =X, + X, and ¥, = X,/X,. Then

=1 Y1¥Y2 - ¥
X1 =g1 (V1> ¥2) = and x; =g; 'y, yo)) =——.
12 Y2 1+y, 2=92 (¥1,)2) Y
Y2 Y1
g 1+ y, (1+ y,)* Z_Fl(}'z+1)=_ Vi
1 V1 (1 +y2)’ (14 y,)*
1+ y, (1+y,)?*
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.fr',.r_,_(}"lm V2)
T T [ (¥1y2)* Vi ]1
=0 +y 27 P\ T2 A+ T A+ )

f
_ il [__I_(l+y§}y?]
2n (1 + y,)* 2it+y)* 1

To find the marginal distribution of, say, Y,, we must integrate out y,;
that 1s

Jy,(y2) = Jj: Sy v.(V1s ¥2) dyy

_1 : Jm |y, | ex l__l_(1+.1’§)}"f]d
= £y TR T T g | Y
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Let
1 (1 +y3) .
TS Dk
then
| +
du = [ }zl}ldyl
(I +y,)
and so
1 (1 + y2)? 1 1
2 e "du=-- :
Saly2) = 7 (14,2 L+ )2 ()| s 1+2

a Cauchy density. That is, the ratio of two independent standard normal
random variables has a Cauchy distribution. i/
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A note on the Cauchy (-Lorentz) distribution

The Cauchy distribution is important as an example of a pathological case.
Cauchy distributions look similar to a normal distribution. However, they
have much heavier tails.

When studying hypothesis tests that assume normality, seeing how the
tests perform on data from a Cauchy distribution is a good indicator of how
sensitive the tests are to heavy-tail departures from normality.

Likewise, it is a good check for robust techniques that are designed to work
well under a wide variety of distributional assumptions.

Finally, the mean and standard deviation of the Cauchy distribution are
undefined. The practical meaning of this is that collecting 1,000 data points
gives no more accurate an estimate of the mean and standard deviation
than does a single point.
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0.7
ty =0, =05
0.5 — =M, 4 =1
0.5] iy =M, =2
o =—2, =1
|
2 4

where Xxg is the location parameter, specifying the location of the peak of the
Cauchy distribution, and y is the scale parameter which specifies the half-
width at half-maximum
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